چھارمین همایش ملی # اقتصاد صنايع بلاستيك در ايران ١٤٠٠ | POPULATION | 87.920.000 | |------------------------|------------| | GDP (2021) | 531 B USD | | Petrochemical products | 57 MT/Y | Circular strategies, technologies, and transition companies are looking beyond traditional economic models. ### Plastics waste rules and regulations HS code 3915 Figure : Global flows of plastic waste and the impact of China's restrictions on plastic imports in 2018. Source: FT Exports of plastic waste, parings and scrap from G7 countries ('000 tonnes) ### Where plastic waste is sent to #### PLASTIC WASTE MARKET, BY REGION 2024 – 37.9USD B ### Known routes of illegal e-waste trade A THROWAWAY WORLD Regional waste generation 2016 2030 forecast 2050 forecast US ton (millions) 432 485 540 Europe & Central Asia 318 377 436 142 195 281 North America Middle East & North Africa 515 663 787 East Asia & the Pacific 368 514 729 254 319 407 South Asia Latin America & Caribbean 142 297 568 Waste generation per person2016, lbs Sub-Saharan Africa 990 990 1320 1650 ## Recycling #### Legend Monomer producer Polymer producer Product producer Waste sorting End of life process ## Mechanical Recycling Various approaches for mechanical recycling of PSW (Plastic solid waste). A generalized process flow diagram for a recycling of PET bottles. Mechanical recycling process of polyethylene plastic film at an industrial plant. #### **Purification (Dissolution/precipitation processes)** W. S. Khan et al., Elsevier, ISBN: 9780128224618, 2022. R. Francis et al., Wiley-VCH, ISBN:9783527338481, 2016. ## Chemical Recycling #### **Chemical recycling** turning plastic waste back into base chemicals and chemical feedstocks recycling.pdf | keyword | occurrence | | | | |--------------|------------|--|--|--| | pyrolysis | 2267 | | | | | pet | 2156 | | | | | pla | 1236 | | | | | pvc | 1166 | | | | | рр | 879 | | | | | glycolysis | 705 | | | | | pu | 662 | | | | | рс | 500 | | | | | ps | 498 | | | | | pe | 380 | | | | | hydrolysis | 279 | | | | | aminolysis | 108 | | | | | polyolefins | 107 | | | | | methanolysis | 83 | | | | | solvolysis | 70 | | | | | catalysis | 47 | | | | | ра | 44 | | | | I. Vollmer et al., Angewandte Chemie International Edition, vol. 59, 15402-15423, 2020. | Process | Usual input | Usual output | Benefits | Limitations | |--------------|--|---|--|---| | Solvolysis | Polycondensates | Produces monomers and Produces monomers and oligomers, which can then be reformed into polymers | | Cannot be used to break carbon—carbon bonds, so only works on polymers with specific groups in their chain Often requires a very pure waste stream | | Pyrolysis | Polyolefins,
Polystyrene (PS) and
mixed plastics | Hydrocarbon products including gases, oils, and waxes Can be useful for mixed streams, or where different polymers cannot be separated, eg for multilayer film | | Poor selectivity in product, requiring further purification and processing before use as feedstock Uses high temperatures, and therefore a lot of energy especially in the absence of catalysts | | Gasification | All plastics | Synthesis gas ('syngas')
made up of CO and H2
mainly | Can take mixed waste,
but can require
pre-treatment | Requires further processing from syngas to hydrocarbons and then to monomers or polymers Need large infrastructures to be profitable, generally on larger scale than pyrolysis plants Very high energy due to temperatures needed | | purification | Polyolefins, Pure recycled Polystyrene (PS), PVC polymers and others | | Useful when there is a known additive to be removed before reformulation Produces a high purity recycled polymer Theoretically a step-by-step solvent process could deal with a mixed polymer stream | Potentially high environmental impact
depending on type of solvents used Polymer can be degraded during process as
with mechanical recycling | #### **Depolymerization (Chemo lysis / solvolysis)** W. S. Khan et al., Elsevier, ISBN: 9780128224618, 2022. R. Francis et al., Wiley-VCH, ISBN:9783527338481, 2016. #### **Feedstock Recycling** W. S. Khan et al., Elsevier, ISBN: 9780128224618, 2022. R. Francis et al., Wiley-VCH, ISBN:9783527338481, 2016. #### **Pyrolysis** #### Gasification Summary of waste plastic techno-economic analysis pyrolysis articles by feedstock, products, region, capacity, capital cost, and return on investment (ROI). | Technology | Feedstock | Major Products | Region | Capacity
(kton/year) | Capital
Cost (MM
USD) | NPV (\$)
Net present value | |---|--|--|----------------|-------------------------|-----------------------------|--| | Pyrolysis | PS, PP, PE | Heavy oils
Petrochemical
feedstock | United Kingdom | 0.7 – 701 | 1.36 – 77.2 | 0.44 /kg – 0.71 /kg | | Pyrolysis + upgrading | PS, PP, PE, PET | Hydrocarbon Fuel | Korea | 260 | \$ 118MM | 0.062 /gal | | Pyrolysis | PE, PP, PET | Diesel
Power
Char | Australia | 14.6 | 3.76 MM | 2.03 MM | | Pyrolysis &
Heat
Integration | HDPE | Ethylene Propylene | United States | 193 | 118.5MM
- 120.5 MM | \$367.8MM - \$383MM | | Fast Pyrolysis (Open-loop & closedloop) | Mixed
Polyolefins mainly
LDPE and
residual PP | Naphtha | Belgium | 120 | Not disclosed | open loop:
32.5/ton
Closed loop: 2.72 /ton | | Pyrolysis | Plastic waste (PP, PE, PS) | Light oil Heavy oil | Malaysia | 120 | 58.6 MM | 20.9 MM | #### Literature reporting liquefaction of typical waste plastics | Type of Plastics | Temp.
(°C) | Pressure
(MPa) | Time
(h) | Concentration Solvent/Gas/Catalyst (%) | | Products | Oil Yield (wt%) | Year | |--|---------------|-------------------|--------------|--|---|---|---|------| | | | | | | Liquefaction under pr | | | | | PE, PP, PS
(continuous
reactor) | 400 | - | - | - | w/ or w/o ZSM-5 | Majority aromatics, some aliphatic liquids and gases | 85% (PE, PP); 90% (PS) | 1992 | | MDPE, HDPE,
PP, PET or mix | 420-450 | 5 | 1 | 66% plastics in
Tetralin/waste oil | H ₂ ; w/ or w/o 1 wt%
HZSM-5/Ferrihydrite
catalyst | Hydrocarbon oil and gases | w/o to with catalyst): 11 to
96% (HDPE); 83 to
98% (PP); 33 to 93%
(MDPE) | 1994 | | Mix of HDPE,
LDPE, PET and PS | 400-440 | 5.6 | 0.5-2 | 50% plastics in Tetralin, decalin, dodecane, C_{12} - C_{20} alkanes | H ₂ ; 10-20 wt%
HZSM-5/FCC catalysts | Hydrocarbon oil and gases | 56.2-75.8% conversion
(mixture);
90-100% conversion
(individual plastics) | 1996 | | PS and SBR | 350-450 | 3.45-
17.23 | 0.25-
2 | 1-5 wt% Fe_2O_3/SO_4^{2-} and ZrO_2/SO_4^{2-} | | Aromatics (PS); Aromatics and C_5 - C_9 paraffins/cycloparaffins. | 80.3% (PS); 72% (SBR) | 1996 | | LDPE, PET,
PVC | 420-440 | 5.5 | 0.25-
0.3 | 70% in Tetralin Hydrogen | | C ₉ -C ₄₀ hydrocarbons and gases | 59% (LDPE) | 1996 | | MDPE, HDPE,
PP | > 420 | 0.68-5.5 | | 30-50% in Tetralin; H_2 or N_2 ; HZSM-5 or Al_2O_3 -Si O_2 -ferrihydrite | | Light, medium and heavy oils | > 90% (all plastics) | 1996 | | HDPE, PP, PB | 350-450 | 3.5-13.8 | 0.5-3 | n-octadecane; H_2 ; 1-2 wt% Fe_2O_3/SO_4^{2-} and ZrO_2/SO_4^{2-} | | Gasoline range paraffins as major products | > 90% | 1997 | | PE and PP | 500 | 0.79 | 0.5 | Hydı | rogen | Light and heavy oils | up to 60% | 1998 | | Post-consumer
plastic (PCW)
mixture | 415-455 | 1.4 | 0.5-1 | H ₂ , 1-5 wt% of HZSM-5 and others | | Higher gasoline range oil with catalysts | up to 85% | 1999 | | PE, PP, PS,
PVC, and PET
(standalone and
mixed) | 500 | 1 | 1 | Nitrogen and Hydrogen | | Hydrocarbon oil and gases with high concentrations of alkanes and single-ring aromatics | Calculated mix vs. PCW (DSD/Waste Fost Plus): 72.3% vs 32.5/64.1% (N ₂); 75.12% vs 48.2/70.6% (H ₂) | 2007 | | Type of Plastics | Temp.
(°C) | Pressure
(MPa) | Time
(h) | Concentr | ration Solvent/Gas/Catalyst | Products
(%) | Oil Yield (wt%) | Year | |--|---------------|-------------------|--------------|---------------------------|-----------------------------|---|---|------| | | | | | Hydrothermal Liquefaction | | | | | | PVC | 200-600 | 1.6-55.7 | 1 | 0.1-2 | None | Low-molecular weight aromatic and aliphatic compounds | 179ppm (300°C), 396ppm
(400°C) | 2004 | | Model mix of PE, PP, PS and PVC | 200-400 | 1-5 | | 100-200 | glass powder additive | Chlorine content after NaOH-
based dechlorination | 40-120 ppm in oil (negl.) | 2011 | | PBT, PC, PLA,
PMMA, POM,
PPO, PVA, SB. | 400 | 25 | 0.25 | 10 | None | Oil%/solid%: nil/50.8 (PBT 48/nil (PMMA), 13.7/8.1 (POM), |), 99.8/nil PC), /68.5 (PET),
78.9/8.8 (PPO), 35.4/2.9 (PVA),
80.8/1.2 (SB) | 2017 | | High Impact PS
(HIPS) | 350-550 | 30 | 0.12-
1 | 1-9 | None | Ethylbenzene (51.3wt%
Toluene (14wt%) and other
polyaromatics (490°C/ | Liquefaction rate of 77wt% | 2019 | | PP | 425-450 | 23 | 0.5-4 | - | None | 80% naphtha | 91% (2 h/425 °C; 1 h/450 °C) | 2019 | | ABS, PA6, PA66, PET, Epoxy, PC, PUR, HDPE, PVC, LDPE, PP, PS | 350 | corresp. to | 0.33 | 5.6 | КОН | Bisphenol-A & phenol (PC, Epoxy) EG (PET), TDA + (PUR) and no | , caprolactam + (PA6, PA66), TE & polyolefinderived products | 2020 | | PP, PS, PC and
PET | 350-450 | 25+ | 0.5-1 | 0.06-0.35 | None | 32% (PP, 425°C, 30 min),
86% (PS, 350°C, 30 min), ar | 16% (PET, 450°C, 30 min),
nd 60% (PC, 425°C, 30 min). | 2020 | | PC | 350-450 | corresp. to | 0.03-
0.5 | 5 | None | IPP, IPrP, phenol, BPA, and other alkylphenols | 57.7 | 2020 | | HDPE | 400-450 | corresp. to | | 57.1 | None | Naphtha, heavy oil and heavy waxes | 86-87% (425°C, 2.5 h or
450°C, 0.75 h) | 2020 | | LDPE, HDPE | 380-450 | corresp. to | 0.25-
4 | 20 | 1% acetic acid | Alkanes, alkenes, cycloalkanes, aromatics, and negligible alcohols | 85-90% (425-450°C, 1 h) | 2020 | Example of a continuous tubular reactor design for hydrothermal liquefaction of plastics (Extracted from the US patent US 8,980,143 B2). Hydrogenolysis of Plastics into Various Hydrocarbons in Batch Reactors. | Catalyst | Polymer | Temperature
(°C) | Pressure (Bar) | Time(h) | Polymer/Catalyst
(Mass) | Products | |--|-------------------|---------------------|----------------|---------|----------------------------|--| | Ru/CeO ₂ | LDPE,
HDPE, PP | 200-240 | 20-60 | 5-24 | 34 | Liquid fuels, waxes
(C5-C45) | | Ru/TiO ₂ | PP | 250 | 30 | 8-16 | 20-40 | Lubricants
(C20-C60),
C1-C2 gases | | Ru/Nb ₂ O ₅ | PET, PS, PC | 200-320 | 3-5 | 12-16 | 1-2 | Aromatic hydrocarbons | | 5Ru/C | PE,
LDPE | 200-225 | 20 | 16 | 25 | Liquid alkanes
(C3-C13), light gases
(C1-C6) | | 5Ru/C | PP | 250 | 35 | 8-24 | 14 | Liquid alkanes (C5-
C32), light gases(C1-C5) | | Ru/FAU | LDPE, PP | 300-350 | 50 | 3 | 50 | Methane, light paraffins (C2-
C11) | | Ru/WO ₃ /ZrO ₂ | LDPE | 250 | 30 | 2 | 40 | Lubricants, waxes, diesel
(C4-C35) | | Ru/C | HDPE | 220 | 30 | 1 | 2 | Lubricants, liquid fuels
(C6-C38) | | Pt/WO ₃ /
ZrO ₂
+Zeolite | LDPE | 250 | 30 | 2 | 10 | Liquid fuels (C5-C22) | | Pt/SrTiO ₃ | PE | 300 | 12 | 96 | 5 | Lubricants, waxes
(Mw 2001000 Da) | | SiO ₂ /Pt/SiO ₂ | HDPE | 300 | 14 | 24 | 88 | Fuels, lubricants
(C8-C32) | | Pt/C | PP | 300 | 15 | 24 | 10 | Lubricants (C5-C45) | Strategies in functionalization of plastics: (A) Functionalization of polyolefins; (B) oxidation of polyisobutene; (C) PLA amination; (D) reactive extrusion ### Conclusion