

چھارمین همایش ملی

اقتصاد صنايع بلاستيك در ايران ١٤٠٠

POPULATION	87.920.000
GDP (2021)	531 B USD
Petrochemical products	57 MT/Y

Circular strategies, technologies, and transition companies are looking beyond traditional economic models.

Plastics waste rules and regulations

HS code 3915

Figure : Global flows of plastic waste and the impact of China's restrictions on plastic imports in 2018. Source: FT Exports of plastic waste, parings and scrap from G7 countries ('000 tonnes)

Where plastic waste is sent to

PLASTIC WASTE MARKET, BY REGION 2024 – 37.9USD B

Known routes of illegal e-waste trade

 A THROWAWAY WORLD Regional waste generation 2016 2030 forecast 2050 forecast US ton (millions) 432 485 540 Europe & Central Asia 318 377 436 142 195 281 North America Middle East & North Africa 515 663 787 East Asia & the Pacific 368 514 729 254 319 407 South Asia Latin America & Caribbean 142 297 568 Waste generation per person2016, lbs Sub-Saharan

Africa

990

990 1320 1650

Recycling

Legend

Monomer producer

Polymer producer

Product producer

Waste sorting

End of life process

Mechanical Recycling

Various approaches for mechanical recycling of PSW (Plastic solid waste).

A generalized process flow diagram for a recycling of PET bottles.

Mechanical recycling process of polyethylene plastic film at an industrial plant.

Purification (Dissolution/precipitation processes)

W. S. Khan et al., Elsevier, ISBN: 9780128224618, 2022. R. Francis et al., Wiley-VCH, ISBN:9783527338481, 2016.

Chemical Recycling

Chemical recycling

turning plastic waste back into base chemicals and chemical feedstocks

recycling.pdf

keyword	occurrence			
pyrolysis	2267			
pet	2156			
pla	1236			
pvc	1166			
рр	879			
glycolysis	705			
pu	662			
рс	500			
ps	498			
pe	380			
hydrolysis	279			
aminolysis	108			
polyolefins	107			
methanolysis	83			
solvolysis	70			
catalysis	47			
ра	44			

I. Vollmer et al., Angewandte Chemie International Edition, vol. 59, 15402-15423, 2020.

Process	Usual input	Usual output	Benefits	Limitations
Solvolysis	Polycondensates	Produces monomers and Produces monomers and oligomers, which can then be reformed into polymers		 Cannot be used to break carbon—carbon bonds, so only works on polymers with specific groups in their chain Often requires a very pure waste stream
Pyrolysis	Polyolefins, Polystyrene (PS) and mixed plastics	Hydrocarbon products including gases, oils, and waxes Can be useful for mixed streams, or where different polymers cannot be separated, eg for multilayer film		 Poor selectivity in product, requiring further purification and processing before use as feedstock Uses high temperatures, and therefore a lot of energy especially in the absence of catalysts
Gasification	All plastics	Synthesis gas ('syngas') made up of CO and H2 mainly	Can take mixed waste, but can require pre-treatment	 Requires further processing from syngas to hydrocarbons and then to monomers or polymers Need large infrastructures to be profitable, generally on larger scale than pyrolysis plants Very high energy due to temperatures needed
purification	Polyolefins, Pure recycled Polystyrene (PS), PVC polymers and others		 Useful when there is a known additive to be removed before reformulation Produces a high purity recycled polymer Theoretically a step-by-step solvent process could deal with a mixed polymer stream 	 Potentially high environmental impact depending on type of solvents used Polymer can be degraded during process as with mechanical recycling

Depolymerization (Chemo lysis / solvolysis)

W. S. Khan et al., Elsevier, ISBN: 9780128224618, 2022. R. Francis et al., Wiley-VCH, ISBN:9783527338481, 2016.

Feedstock Recycling

W. S. Khan et al., Elsevier, ISBN: 9780128224618, 2022. R. Francis et al., Wiley-VCH, ISBN:9783527338481, 2016.

Pyrolysis

Gasification

Summary of waste plastic techno-economic analysis pyrolysis articles by feedstock, products, region, capacity, capital cost, and return on investment (ROI).

Technology	Feedstock	Major Products	Region	Capacity (kton/year)	Capital Cost (MM USD)	NPV (\$) Net present value
Pyrolysis	PS, PP, PE	Heavy oils Petrochemical feedstock	United Kingdom	0.7 – 701	1.36 – 77.2	0.44 /kg – 0.71 /kg
Pyrolysis + upgrading	PS, PP, PE, PET	Hydrocarbon Fuel	Korea	260	\$ 118MM	0.062 /gal
Pyrolysis	PE, PP, PET	Diesel Power Char	Australia	14.6	3.76 MM	2.03 MM
Pyrolysis & Heat Integration	HDPE	Ethylene Propylene	United States	193	118.5MM - 120.5 MM	\$367.8MM - \$383MM
Fast Pyrolysis (Open-loop & closedloop)	Mixed Polyolefins mainly LDPE and residual PP	Naphtha	Belgium	120	Not disclosed	open loop: 32.5/ton Closed loop: 2.72 /ton
Pyrolysis	Plastic waste (PP, PE, PS)	Light oil Heavy oil	Malaysia	120	58.6 MM	20.9 MM

Literature reporting liquefaction of typical waste plastics

Type of Plastics	Temp. (°C)	Pressure (MPa)	Time (h)	Concentration Solvent/Gas/Catalyst (%)		Products	Oil Yield (wt%)	Year
					Liquefaction under pr			
PE, PP, PS (continuous reactor)	400	-	-	-	w/ or w/o ZSM-5	Majority aromatics, some aliphatic liquids and gases	85% (PE, PP); 90% (PS)	1992
MDPE, HDPE, PP, PET or mix	420-450	5	1	66% plastics in Tetralin/waste oil	H ₂ ; w/ or w/o 1 wt% HZSM-5/Ferrihydrite catalyst	Hydrocarbon oil and gases	w/o to with catalyst): 11 to 96% (HDPE); 83 to 98% (PP); 33 to 93% (MDPE)	1994
Mix of HDPE, LDPE, PET and PS	400-440	5.6	0.5-2	50% plastics in Tetralin, decalin, dodecane, C_{12} - C_{20} alkanes	H ₂ ; 10-20 wt% HZSM-5/FCC catalysts	Hydrocarbon oil and gases	56.2-75.8% conversion (mixture); 90-100% conversion (individual plastics)	1996
PS and SBR	350-450	3.45- 17.23	0.25- 2	1-5 wt% Fe_2O_3/SO_4^{2-} and ZrO_2/SO_4^{2-}		Aromatics (PS); Aromatics and C_5 - C_9 paraffins/cycloparaffins.	80.3% (PS); 72% (SBR)	1996
LDPE, PET, PVC	420-440	5.5	0.25- 0.3	70% in Tetralin Hydrogen		C ₉ -C ₄₀ hydrocarbons and gases	59% (LDPE)	1996
MDPE, HDPE, PP	> 420	0.68-5.5		30-50% in Tetralin; H_2 or N_2 ; HZSM-5 or Al_2O_3 -Si O_2 -ferrihydrite		Light, medium and heavy oils	> 90% (all plastics)	1996
HDPE, PP, PB	350-450	3.5-13.8	0.5-3	n-octadecane; H_2 ; 1-2 wt% Fe_2O_3/SO_4^{2-} and ZrO_2/SO_4^{2-}		Gasoline range paraffins as major products	> 90%	1997
PE and PP	500	0.79	0.5	Hydı	rogen	Light and heavy oils	up to 60%	1998
Post-consumer plastic (PCW) mixture	415-455	1.4	0.5-1	H ₂ , 1-5 wt% of HZSM-5 and others		Higher gasoline range oil with catalysts	up to 85%	1999
PE, PP, PS, PVC, and PET (standalone and mixed)	500	1	1	Nitrogen and Hydrogen		Hydrocarbon oil and gases with high concentrations of alkanes and single-ring aromatics	Calculated mix vs. PCW (DSD/Waste Fost Plus): 72.3% vs 32.5/64.1% (N ₂); 75.12% vs 48.2/70.6% (H ₂)	2007

Type of Plastics	Temp. (°C)	Pressure (MPa)	Time (h)	Concentr	ration Solvent/Gas/Catalyst	Products (%)	Oil Yield (wt%)	Year
				Hydrothermal Liquefaction				
PVC	200-600	1.6-55.7	1	0.1-2	None	Low-molecular weight aromatic and aliphatic compounds	179ppm (300°C), 396ppm (400°C)	2004
Model mix of PE, PP, PS and PVC	200-400	1-5		100-200	glass powder additive	Chlorine content after NaOH- based dechlorination	40-120 ppm in oil (negl.)	2011
PBT, PC, PLA, PMMA, POM, PPO, PVA, SB.	400	25	0.25	10	None	Oil%/solid%: nil/50.8 (PBT 48/nil (PMMA), 13.7/8.1 (POM),), 99.8/nil PC), /68.5 (PET), 78.9/8.8 (PPO), 35.4/2.9 (PVA), 80.8/1.2 (SB)	2017
High Impact PS (HIPS)	350-550	30	0.12- 1	1-9	None	Ethylbenzene (51.3wt% Toluene (14wt%) and other polyaromatics (490°C/	Liquefaction rate of 77wt%	2019
PP	425-450	23	0.5-4	-	None	80% naphtha	91% (2 h/425 °C; 1 h/450 °C)	2019
ABS, PA6, PA66, PET, Epoxy, PC, PUR, HDPE, PVC, LDPE, PP, PS	350	corresp. to	0.33	5.6	КОН	Bisphenol-A & phenol (PC, Epoxy) EG (PET), TDA + (PUR) and no	, caprolactam + (PA6, PA66), TE & polyolefinderived products	2020
PP, PS, PC and PET	350-450	25+	0.5-1	0.06-0.35	None	32% (PP, 425°C, 30 min), 86% (PS, 350°C, 30 min), ar	16% (PET, 450°C, 30 min), nd 60% (PC, 425°C, 30 min).	2020
PC	350-450	corresp. to	0.03- 0.5	5	None	IPP, IPrP, phenol, BPA, and other alkylphenols	57.7	2020
HDPE	400-450	corresp. to		57.1	None	Naphtha, heavy oil and heavy waxes	86-87% (425°C, 2.5 h or 450°C, 0.75 h)	2020
LDPE, HDPE	380-450	corresp. to	0.25- 4	20	1% acetic acid	Alkanes, alkenes, cycloalkanes, aromatics, and negligible alcohols	85-90% (425-450°C, 1 h)	2020

Example of a continuous tubular reactor design for hydrothermal liquefaction of plastics (Extracted from the US patent US 8,980,143 B2).

Hydrogenolysis of Plastics into Various Hydrocarbons in Batch Reactors.

Catalyst	Polymer	Temperature (°C)	Pressure (Bar)	Time(h)	Polymer/Catalyst (Mass)	Products
Ru/CeO ₂	LDPE, HDPE, PP	200-240	20-60	5-24	34	Liquid fuels, waxes (C5-C45)
Ru/TiO ₂	PP	250	30	8-16	20-40	Lubricants (C20-C60), C1-C2 gases
Ru/Nb ₂ O ₅	PET, PS, PC	200-320	3-5	12-16	1-2	Aromatic hydrocarbons
5Ru/C	PE, LDPE	200-225	20	16	25	Liquid alkanes (C3-C13), light gases (C1-C6)
5Ru/C	PP	250	35	8-24	14	Liquid alkanes (C5- C32), light gases(C1-C5)
Ru/FAU	LDPE, PP	300-350	50	3	50	Methane, light paraffins (C2- C11)
Ru/WO ₃ /ZrO ₂	LDPE	250	30	2	40	Lubricants, waxes, diesel (C4-C35)
Ru/C	HDPE	220	30	1	2	Lubricants, liquid fuels (C6-C38)
Pt/WO ₃ / ZrO ₂ +Zeolite	LDPE	250	30	2	10	Liquid fuels (C5-C22)
Pt/SrTiO ₃	PE	300	12	96	5	Lubricants, waxes (Mw 2001000 Da)
SiO ₂ /Pt/SiO ₂	HDPE	300	14	24	88	Fuels, lubricants (C8-C32)
Pt/C	PP	300	15	24	10	Lubricants (C5-C45)

Strategies in functionalization of plastics: (A) Functionalization of polyolefins; (B) oxidation of polyisobutene; (C) PLA amination; (D) reactive extrusion

Conclusion

