

Heap leaching of copper ores – opportunity through science

Jochen Petersen

A typical heap leach operation

Heap leach process

Particle Scale Heap Scale Grain/Surface Scale Agglomerate Scale

Solution 'seeps' along preferential channels on air-liquid contact surfaces

sessile and planktonic micro-organisms

Acid leaching of malachite

 $Cu_2CO_3(OH)_2 + 2H_2SO_4 \rightarrow 2CuSO_4 + CO_2 + 3H_2O$

```
Ferric leaching of covellite
```

 $CuS + 2Fe^{3+} \rightarrow Cu^{2+} + 2Fe^{2+} + S^{o}$

Chloride facilitate leaching of chalcopyrite $CuFeS_2 + 3Cu^{2+} - (Cl^-) \rightarrow 4Cu^+ + Fe^{2+} + 2S^o$

Ferrous re-oxidation (biologically accelerated) $4Fe^{2+} + O_2 + 4H^+ \rightarrow 4Fe^{3+} + 2H_2O$

Cuprous re-oxidation (rapid in chloride solution) $4Cu^+ + O_2 + 4H^+ - (Cl^-) \rightarrow 4Cu^{2+} + 2H_2O$ Sulfur oxidation (chemically or biologically facilitated)

 $2S + 3O_2 + 2H_2O \rightarrow 2H_2SO_4$

Is heap leaching a competitive technology?

- Slow process, residence time of months to years
- Poorer extraction (70-80%)
- Large physical footprint
- Long-term environmental burden uncertain

BUT

- Low energy requirements (crushing instead of milling)
- Simple, low-cost technology, can operate at remote sites
- Spent heaps comparable to tailings dams from minerals processing

Heap Leaching vs. Conventional Processing HYDR met

Effect on inventory on NPV

In heaps, inventory cost is directly linked to tons of ore under leach/ leach time

Why is heap leaching often so slow?

- Slow reaction kinetics at low temperatures
- Unliberated minerals in large particles
- Low aeration rates and poor gas-liquid mass transfer
- Solution channelling and stagnant zones
- re-adsorption of Cu onto precipitated Fe phases

• X-ray tomography shows shrinking shell and unreacted core

Gas-liquid mass transfer

- rate limited by low O₂ solubility and interfacial area
- O₂ solubility limited by temperature, solution salinity and air pressure

Solution Flow through Heaps

Copper attenuation on Fe precipitates

HYDR met

Lag due to bio-colonisation

• Progressive 'cementation' of heap ore by Fe-precipitates

- Nano SEM studies of freshly precipitated Fe-OH
- Network structure of precipitate offers large surface for metal sorption and inhibits solution flow

Heap Modelling

HeapSim Model

- Complex distributions of reagent and heat distribution throughout heaps determines local rates of leaching;
- Ambient conditions have significant impact on oxidative heap leaching;
- Optimal heap design varies strongly with ore characteristics;
- There are 'speed limits' to the maximum rate of leaching:
 - Supply rate of acid (rare)
 - Reagent distribution through stagnant (diffusion) zones
 - Mineral liberation in large particles
 - Supply rate of oxidant (air) gas liquid mass-transfer
 - Formation of adsorption buffers

- Heap leaching is a technically simple process, but of immense physical complexity at all scales.
- The interplay of these complexities is difficult to grasp, yet understanding them offers opportunities to conduct the process efficiently.
- Economic analysis indicates if heaps can be made to operate reliably at their optimum, they would be a serious technology of choice.
- Heaps do have a future!

Thank You

The National Research Foundation (NRF) of South Africa is acknowledged for funding this research through their Incentive Funding for Rated Researcher programme.

